If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+30t-50=0
a = 5; b = 30; c = -50;
Δ = b2-4ac
Δ = 302-4·5·(-50)
Δ = 1900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1900}=\sqrt{100*19}=\sqrt{100}*\sqrt{19}=10\sqrt{19}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{19}}{2*5}=\frac{-30-10\sqrt{19}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{19}}{2*5}=\frac{-30+10\sqrt{19}}{10} $
| -12=-n-3n | | x+61+80+x+51=180 | | 5x-7-4x=x+7 | | y=-0.70(50)+140 | | y=-0.70(40)+140 | | y=-0.70(30)+140 | | y=-0.70(20)+140 | | 21x-6=48 | | X/3+4x=52 | | 10.13p=3.14(p-7.82) | | p2− 5=-4 | | 3/4n-18=1/4n+4 | | 6x=5x+20° | | 5^(2x-2)+10x/25=5^(x+3)+125*2^x | | -2(-10-3x)-11=41 | | 6+3(-8x-5)=-6 | | 0.16x+6=12 | | -6j=-7J+7 | | 7(5+2x)+100=142 | | -2(3n-2)-n=-11(n-1) | | x/5=0.9 | | (X+6)-(5-2x)+2=0 | | 5^2x-2+10x/25=5^x+3+125*2^x | | -4-7+6x=4 | | -3(2x+2)+4=-11 | | 1+3g=13 | | (X-6)-(5-2x)+2=0 | | 9+2s=15s | | 4x+3x-9=19 | | 2g+3(2g+2)=-10 | | -3=12x5(2x-7) | | 8x-9-6x=-6 |